Grain-size dependence of plastic deformation in nanocrystalline Fe

نویسندگان

  • D. Jang
  • M. Atzmon
چکیده

Plastic deformation of nanocrystalline Fe was investigated by nanoindentation. Samples, synthesized by mechanical attrition, consisted of powder particles with diameters greater than 30 mm. The average grain diameters within the particles of different samples ranged from 10 nm to 10 mm. To avoid potential artifacts, samples were prepared without use of heat treatment, and measurements were conducted at a depth significantly smaller than the powder particle size. Corrections were made for the indentation-size effect and for pileup or sink in around the indent. The volume-averaged grain size was used in the analysis. The Hall-Petch relation is obeyed for grain sizes above about 18 nm, and slight softening occurs at smaller grain sizes. The strain-rate sensitivity increases monotonically with decreasing grain size. The results are consistent with grain-boundary sliding. © 2003 American Institute of Physics. @DOI: 10.1063/1.1569035#

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A maximum in the strength of nanocrystalline copper.

We used molecular dynamics simulations with system sizes up to 100 million atoms to simulate plastic deformation of nanocrystalline copper. By varying the grain size between 5 and 50 nanometers, we show that the flow stress and thus the strength exhibit a maximum at a grain size of 10 to 15 nanometers. This maximum is because of a shift in the microscopic deformation mechanism from dislocation-...

متن کامل

Plastic deformation recovery in freestanding nanocrystalline aluminum and gold thin films.

In nanocrystalline metals, lack of intragranular dislocation sources leads to plastic deformation mechanisms that substantially differ from those in coarse-grained metals. However, irrespective of grain size, plastic deformation is considered irrecoverable. We show experimentally that plastically deformed nanocrystalline aluminum and gold films with grain sizes of 65 nanometers and 50 nanometer...

متن کامل

Finite Element Modeling of Strain Rate and Grain Size Dependency in Nanocrystalline Materials

Nanocrystalline materials show a higher strain-rate sensitivity in contrast to the conventional coarse-grained materials and a different grain size dependency. To explain these phenomenon, a finite element model is constructed that considers both grain interior and grain boundary deformation of nanocrystalline materials. The model consist of several crystalline cores with different orientations...

متن کامل

Comment on "Grain boundary-mediated plasticity in nanocrystalline nickel".

Nanograin rotation via grain boundary sliding has been predicted as an important deformation mode in nanocrystalline materials as grain sizes approach less than 10 nm (1–3). However, definite experimental evidence beyond molecular dynamics (MD) simulations has been long sought. Recently, Shan et al. (4) reported in situ straining dark-field transmission electron microscope (DFTEM) observations ...

متن کامل

HALL-PETCH RELATIONSHIP AND STRAIN RATE SENSITIVITY OF NANOCRYSTALLINE Mg - 5WT% Al ALLOY

This study investigated the grain size dependence of mechanical properties and deformation mechanisms of microcrystalline (mc) and nanocrystalline (nc: grain size below 100 nm) Mg-5wt% Al alloys. The Hall-Petch relationship was investigated by both instrumented indentation tests and compression tests. The test results from the indentation tests and compression tests match well with each other. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003